DatasetDict({
train: Dataset({
features: ['id', 'ner_tags', 'nested_ner_tags', 'source', 'tokens'],
num_rows: 24000
})
validation: Dataset({
features: ['id', 'ner_tags', 'nested_ner_tags', 'source', 'tokens'],
num_rows: 2200
})
test: Dataset({
features: ['id', 'ner_tags', 'nested_ner_tags', 'source', 'tokens'],
num_rows: 5100
})
})
{'id': '0', 'ner_tags': [19, 0, 0, 0, 7, 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'nested_ner_tags': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'source': 'n-tv.de vom 26.02.2005 [2005-02-26] ', 'tokens': ['Schartau', 'sagte', 'dem', '"', 'Tagesspiegel', '"', 'vom', 'Freitag', ',', 'Fischer', 'sei', '"', 'in', 'einer', 'Weise', 'aufgetreten', ',', 'die', 'alles', 'andere', 'als', 'überzeugend', 'war', '"', '.']}
{'id': Value(dtype='string', id=None), 'ner_tags': Sequence(feature=ClassLabel(num_classes=25, names=['O', 'B-LOC', 'I-LOC', 'B-LOCderiv', 'I-LOCderiv', 'B-LOCpart', 'I-LOCpart', 'B-ORG', 'I-ORG', 'B-ORGderiv', 'I-ORGderiv', 'B-ORGpart', 'I-ORGpart', 'B-OTH', 'I-OTH', 'B-OTHderiv', 'I-OTHderiv', 'B-OTHpart', 'I-OTHpart', 'B-PER', 'I-PER', 'B-PERderiv', 'I-PERderiv', 'B-PERpart', 'I-PERpart'], names_file=None, id=None), length=-1, id=None), 'nested_ner_tags': Sequence(feature=ClassLabel(num_classes=25, names=['O', 'B-LOC', 'I-LOC', 'B-LOCderiv', 'I-LOCderiv', 'B-LOCpart', 'I-LOCpart', 'B-ORG', 'I-ORG', 'B-ORGderiv', 'I-ORGderiv', 'B-ORGpart', 'I-ORGpart', 'B-OTH', 'I-OTH', 'B-OTHderiv', 'I-OTHderiv', 'B-OTHpart', 'I-OTHpart', 'B-PER', 'I-PER', 'B-PERderiv', 'I-PERderiv', 'B-PERpart', 'I-PERpart'], names_file=None, id=None), length=-1, id=None), 'source': Value(dtype='string', id=None), 'tokens': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)}