This module contains custom models, custom splitters, etc... translation tasks.
torch.cuda.set_device(1)
print(f'Using GPU #{torch.cuda.current_device()}: {torch.cuda.get_device_name()}')
ds = load_dataset('wmt16', 'de-en', split='train[:1%]')
path = Path('./')
wmt_df = pd.DataFrame(ds['translation'], columns=['de', 'en']); len(wmt_df)
wmt_df = wmt_df.iloc[:1000]
wmt_df.head(2)
pretrained_model_name = "facebook/bart-large-cnn"
task = HF_TASKS_AUTO.Seq2SeqLM
hf_arch, hf_config, hf_tokenizer, hf_model = BLURR_MODEL_HELPER.get_hf_objects(pretrained_model_name, task=task)
hf_arch, type(hf_tokenizer), type(hf_config), type(hf_model)
blocks = (HF_Seq2SeqBlock(hf_arch, hf_config, hf_tokenizer, hf_model), noop)
dblock = DataBlock(blocks=blocks, get_x=ColReader('de'), get_y=ColReader('en'), splitter=RandomSplitter())
dls = dblock.dataloaders(wmt_df, bs=2)
b = dls.one_batch()
len(b), b[0]['input_ids'].shape, b[1].shape
dls.show_batch(dataloaders=dls, max_n=2, input_trunc_at=250, target_trunc_at=250)
seq2seq_metrics = {
'bleu': { 'returns': "bleu" },
'meteor': { 'returns': "meteor" },
'sacrebleu': { 'returns': "score" }
}
model = HF_BaseModelWrapper(hf_model)
learn_cbs = [HF_BaseModelCallback]
fit_cbs = [HF_Seq2SeqMetricsCallback(custom_metrics=seq2seq_metrics)]
learn = Learner(dls,
model,
opt_func=partial(Adam),
loss_func=CrossEntropyLossFlat(), #HF_PreCalculatedLoss()
cbs=learn_cbs,
splitter=partial(seq2seq_splitter, arch=hf_arch)) #.to_native_fp16() #.to_fp16()
learn.create_opt()
learn.freeze()
# preds = learn.model(b[0])
# len(preds),preds['loss'].shape, preds['logits'].shape
len(b), len(b[0]), b[0]['input_ids'].shape, len(b[1]), b[1].shape
print(len(learn.opt.param_groups))
learn.lr_find(suggestions=True)
learn.fit_one_cycle(1, lr_max=4e-5, cbs=fit_cbs)
learn.show_results(learner=learn, input_trunc_at=500, target_trunc_at=500)
test_de = "Ich trinke gerne Bier"
outputs = learn.blurr_generate(test_de, num_return_sequences=3)
for idx, o in enumerate(outputs):
print(f'=== Prediction {idx+1} ===\n{o}\n')
export_fname = 'translation_export'
learn.metrics = None
learn.export(fname=f'{export_fname}.pkl')
inf_learn = load_learner(fname=f'{export_fname}.pkl')
inf_learn.blurr_generate(test_de)
Tests
The purpose of the following tests is to ensure as much as possible, that the core training code works for the pretrained summarization models below. These tests are excluded from the CI workflow because of how long they would take to run and the amount of data that would be required to download.
Note: Feel free to modify the code below to test whatever pretrained summarization models you are working with ... and if any of your pretrained summarization models fail, please submit a github issue (or a PR if you'd like to fix it yourself)
try: del learn; torch.cuda.empty_cache()
except: pass
[ model_type for model_type in BLURR_MODEL_HELPER.get_models(task='ConditionalGeneration')
if (not model_type.__name__.startswith('TF')) ]
pretrained_model_names = [
'facebook/bart-base',
'facebook/wmt19-de-en', # FSMT
'Helsinki-NLP/opus-mt-de-en', # MarianMT
#'sshleifer/tiny-mbart',
#'google/mt5-small',
't5-small'
]
path = Path('./')
ds = load_dataset('wmt16', 'de-en', split='train[:1%]')
wmt_df = pd.DataFrame(ds['translation'], columns=['de', 'en']); len(wmt_df)
wmt_df = wmt_df.iloc[:1000]
#hide_output
task = HF_TASKS_AUTO.Seq2SeqLM
bsz = 2
inp_seq_sz = 128; trg_seq_sz = 128
test_results = []
for model_name in pretrained_model_names:
error=None
print(f'=== {model_name} ===\n')
hf_arch, hf_config, hf_tokenizer, hf_model = BLURR_MODEL_HELPER.get_hf_objects(model_name, task=task)
print(f'architecture:\t{hf_arch}\ntokenizer:\t{type(hf_tokenizer).__name__}\nmodel:\t\t{type(hf_model).__name__}\n')
# 1. build your DataBlock
text_gen_kwargs = default_text_gen_kwargs(hf_config, hf_model, task='translation')
tok_kwargs = {}
if (hf_arch == 'mbart'):
tok_kwargs['src_lang'], tok_kwargs['tgt_lang'] = "de_DE", "en_XX"
def add_t5_prefix(inp): return f'translate German to English: {inp}' if (hf_arch == 't5') else inp
before_batch_tfm = HF_Seq2SeqBeforeBatchTransform(hf_arch, hf_config, hf_tokenizer, hf_model,
padding='max_length',
max_length=inp_seq_sz,
max_target_length=trg_seq_sz,
tok_kwargs=tok_kwargs, text_gen_kwargs=text_gen_kwargs)
blocks = (HF_Seq2SeqBlock(before_batch_tfm=before_batch_tfm), noop)
dblock = DataBlock(blocks=blocks,
get_x=Pipeline([ColReader('de'), add_t5_prefix]),
get_y=ColReader('en'),
splitter=RandomSplitter())
dls = dblock.dataloaders(wmt_df, bs=bsz)
b = dls.one_batch()
# 2. build your Learner
seq2seq_metrics = {}
model = HF_BaseModelWrapper(hf_model)
fit_cbs = [
ShortEpochCallback(0.05, short_valid=True),
HF_Seq2SeqMetricsCallback(custom_metrics=seq2seq_metrics)
]
learn = Learner(dls,
model,
opt_func=ranger,
loss_func=HF_PreCalculatedLoss(),
cbs=[HF_BaseModelCallback],
splitter=partial(seq2seq_splitter, arch=hf_arch)).to_fp16()
learn.create_opt()
learn.freeze()
# 3. Run your tests
try:
print('*** TESTING DataLoaders ***\n')
test_eq(len(b), 2)
test_eq(len(b[0]['input_ids']), bsz)
test_eq(b[0]['input_ids'].shape, torch.Size([bsz, inp_seq_sz]))
test_eq(len(b[1]), bsz)
# print('*** TESTING One pass through the model ***')
# preds = learn.model(b[0])
# test_eq(preds[1].shape[0], bsz)
# test_eq(preds[1].shape[2], hf_config.vocab_size)
print('*** TESTING Training/Results ***')
learn.fit_one_cycle(1, lr_max=1e-3, cbs=fit_cbs)
test_results.append((hf_arch, type(hf_tokenizer).__name__, type(hf_model).__name__, 'PASSED', ''))
learn.show_results(learner=learn, max_n=2, input_trunc_at=500, target_trunc_at=250)
except Exception as err:
test_results.append((hf_arch, type(hf_tokenizer).__name__, type(hf_model).__name__, 'FAILED', err))
finally:
# cleanup
del learn; torch.cuda.empty_cache()